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Abstract—The detection of double edges in X-ray images of lum-
bar vertebrae is of prime importance in the assessment of vertebral
injury or collapse that may be caused by osteoporosis and other
spine pathology. In addition, if the above double-edge detection
process is conducted within an automatic framework, it would not
only facilitate inexpensive and fast means of obtaining objective
morphometric measurements on the spine, but also remove the hu-
man subjectivity involved in the morphometric analysis. This paper
proposes a novel force-formulation scheme, termed as pressurized
open directional gradient vector flow snakes, to discriminate and
detect the superior and inferior double edges present in the radio-
graphic images of the lumbar vertebrae. As part of the validation
process, this algorithm is applied to a set of 100 lumbar images
and the detection results are quantified using analyst-generated
ground truth. The promising nature of the detection results bears
testimony to the efficacy of the proposed approach.

Index Terms—Directional gradient vector flow (DGVF) snakes,
double edges, energy minimization, lumbar vertebrae, pressure
force.

I. INTRODUCTION

THE LOWER back (lumbar) region of the human spinal
column is composed of a set of five vertebrae, commonly

referred to as L1 through L5 [see Fig. 1(a)]. These vertebrae
carry the maximal percent of the body weight and are usually
subject to the largest forces and stresses along the spine [1].
Pathology on these vertebrae can be associated with backpain-
related ailments. Therefore, early diagnosis/detection of these
spinal disorders is of great interest to the osteoarthritis research
community.

The Lister Hill National Center for Biomedical Communica-
tions, an R&D division of the National Library of Medicine
(NLM), has archived a large repository of around 8000
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Fig. 1. (a) L1-L5 marked in a radiographic lumbar image. (b) Superior and
inferior double edges.

radiographic lumbar images, in collaboration with the Na-
tional Center for Health Statistics and the National Institute of
Arthritis and Musculoskeletal and Skin Diseases. Researchers
at NLM aim to classify vertebrae from the collected images as
normal or abnormal for conditions of interest to the osteoarthri-
tis community. For similar reasons, a number of researchers in
the computer vision community have developed methods for
extracting morphometric measurements from the radiographic
lumbar vertebrae images [2]–[6].

In order to elicit the aforementioned morphometric measure-
ments, one needs to accurately extract a corresponding set of
vertebral morphometric points by segmenting the upper and
lower end plates of each of the five lumbar vertebrae. How-
ever, in radiographic lumbar images, these vertebral end plates
mostly occur as double edges [see Fig. 1(b)] due to a combi-
nation of some or all of the following factors: 1) an oblique
viewing angle of the vertebra relative to the X-ray beam; 2) the
projective nature of the X-ray image, which shows edges that
would normally be hidden by the vertebral body; and 3) differ-
ential edge height between the near and far edges, which may
be due to anatomy, injury, and/or pathology. This double-edge
phenomenon on lateral radiographs is well-known in the radio-
graphic community and has been discussed and illustrated in
the published literature [7].

As prescribed in [2] and [7], various vertebral morphome-
tric measurements can be made by accurately identifying six
morphometric points that are as shown in Fig. 2. In this illus-
tration, one can notice that the middle superior and the middle
inferior morphometric points are marked midway between the
two double edges that represent the superior and the inferior
end plates, respectively. Hence, this method of morphometric
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Fig. 2. Illustrating the six morphometric points that are generally used to make
various morphometric measurements [2].

point placement clearly requires the detection of the said double
edges, which is performed either implicitly [2], [8] or explic-
itly [7], [9] by radiologists during the process of assessing spine
pathology [10].

In the past, others [3]–[6], [11]–[15] have proposed various
segmentation methods to delineate the lumbar vertebrae in the
spine radiographs. The research conducted in [3] and [4] elabo-
rates on an automatic delineation technique, wherein the authors
use an edge detection scheme coupled with a priori knowledge
to identify the edges corresponding to the lumbar vertebrae. The
work performed by Casciaro and Massoptier [5], automatically
segments the lumbar vertebrae by first enhancing the vertebral
edges in the frequency domain and subsequently employing a
shape recognition function to identify potential vertebral bor-
ders. Cherukuri et al. [6], present a semiautomatic segmen-
tation technique, wherein radiologists mark 7–9 points along
the vertebra’s body. To generate a closed boundary, the expert-
generated points are connected together by employing a second-
order B-spline algorithm. The works detailed in [11]–[15] adopt
a shape-based segmentation approach using deformable models
to automatically delineate the vertebral boundaries. In particu-
lar, the research in [11] and [12] utilizes active shape models
(ASM), whereas those in [13] and [14] utilize active appearance
models (AAM) for segmenting the lumbar vertebrae. The work
conducted in [15] adopts a hierarchical shape-based approach
to segmenting the lumbar vertebrae, wherein the generalized
hough transform (GHT) is employed to initialize AAM. How-
ever, the aforementioned methods, while reasonably successful
in segmenting the vertebral body, do not address one significant
aspect of lumbar vertebrae segmentation. Specifically, they stop
short of detecting the double edges of each vertebra. Research re-
sults for double-edge detection in the published literature appear
to be quite rare. Gardner et al. [9] has extensively discussed the
measurement errors resulting from neglecting the double edges,
and further, demonstrated double-edge detection using an active
contour approach. The snake model in [9], however, is initial-
ized using operator-provided points and also the procedure has
not been validated on a sizeable dataset of images.

In this paper, we propose a novel force-formulation algorithm,
referred to as pressurized open directional gradient vector flow
(PODGVF) that automatically and accurately detects the double
edges in the lumbar vertebrae. In particular, this approach uses
a set of four open-contour snakes, wherein a pressure force term

is combined with the recently introduced directional gradient
vector flow (DGVF) snakes [16], [17] to differentiate and detect
the superior and inferior double edges. The pressure forces in
the deformable model are constructed to overcome the noise in
the image and also to reduce the influence of the neighboring
vertebra on the double-edge detection result. It is noteworthy
that PODGVF can readily handle vertebrae that appear to have
single superior and inferior edges. This is an important feature
of the proposed method, as the presence of double edges is
not always guaranteed. The approach has been validated on a
set of 100 lumbar spine radiographs. In each of these cases,
the detection results have been computed and quantified using
analyst-generated, radiologist-verified ground truth. These re-
sults look promising for extending the automated analysis of
spine pathologies with capability to handle double edges.

This paper is organized as follows. Section II explains the
algorithm used for detecting the double edges, starting with an
overview of parametric snakes and further explaining the for-
mulation of the force equations that constitute the PODGVF
snakes. Finally, this section discusses the step-by-step approach
used to detect the double edges. Section III discusses the exper-
imental results of the double-edge detection scheme on a set of
100 spine radiographs, and illustrates the role of the detected
double edges in computing morphometric features for charac-
terizing vertebral deformities in the lumbar spine. Finally, the
last section presents the conclusions of this paper.

II. TECHNICAL APPROACH: PODGVF SNAKES

We give a brief overview of parametric snakes before dis-
cussing the algorithm. A snake contour is represented paramet-
rically as V (s) = [x(s), y(s)], where ‘‘s’’ is the arc length nor-
malized from 0 to 1 (in the continuous case). In discrete terms,
snakes essentially consist of a set of control points, connected
by straight lines. The properties of a snake can be formulated
through an energy function. Based on prior knowledge of the
application, the energy function could be appropriately speci-
fied by the user. On every iteration, the snake contour evolves
such that it leads to reduction in its energy. Typically, the energy
function for a snake can be subdivided into internal and external
energies. Thus, the total energy is given by

Esnake =
∫ 1

s=0
(Einternal(V (s)) + Eexternal(V (s)))ds (1)

where Esnake , Einternal , and Eexternal represent the total, inter-
nal, and external energies of the snake, respectively.

Internal energy depends on the properties of the contour, such
as length, curvature, and area enclosed, whereas external energy
depends on the image features such as edges. As mentioned
earlier, the goal is to derive a force that minimizes the total
energy of the snake. This can be done by using the calculus
of variations method [18]. This derived force is responsible for
driving the contour to the desired location. This force can be
expressed as follows:

Fx = Fx,internal + Fx,external (2)

Fy = Fy,internal + Fy,external (3)
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Fig. 3. (a) Illustration of the concept of a positive and negative edge. (b)
Labeling of double edges present in the lumbar vertebra.

where Fx and Fy are the overall forces that drive the contour in
the x- and y-directions, respectively. Fx,internal and Fy,internal
are the internal forces, whereas Fx,external and Fy,external are
the external forces in the x- and y-directions, respectively.

The following section explains the formulation of the force
equations in the context of the current application.

A. Formulating Force Equations to Detect Double Edges

Before setting up the force equations for this application, it
is essential to establish the concept of a positive and a nega-
tive edge. In a gray level image, a positive edge or a negative
edge occurs when the intensity gradients along a boundary point
inward or outward, respectively. For illustrative purposes, con-
sider Fig. 3(a), which shows a rectangular object with an inner
and outer boundary. The positive edge is taken to be the outer
boundary and the negative edge is considered to be the inner
boundary. Hence, in the current application, the outer bound-
aries of the double edges are labeled as positive upper and lower
edges, whereas the inner boundaries of the double edges are
labeled as negative upper and lower edges [see Fig. 3(b)]. Four
snakes with open contours are used to detect these four edges
independently. All these snakes are driven by a customized com-
bination of internal and external forces that minimize the energy
of the snakes at every iteration.

1) Internal Force Formulation: The internal energy func-
tional of the four snakes are given by

Einternal =
∫ 1

s=0

(
α

∣∣∣∣dV (s)
ds

∣∣∣∣
2

+ β

∣∣∣∣d2V (s)
ds2

∣∣∣∣
2

− ρ

∫
A

)
ds.

(4)
The first term α |dv(s)/d(s)|2 is generally referred to as the

elastic energy (Eelastic). Here, Eelastic is proportional to the
length of the contour and α is the weight parameter associated
with the elastic energy term. The second term β

∣∣d2V (s)/ds2
∣∣2

is generally referred to as the bending energy (Ebending ). Here,
Ebending depends on the curvature of the contour and β is the
weight parameter associated with the bending energy term. α
and β are positive constants. Minimization of the first two terms
in the internal energy equation will make the snake smooth and
continuous. These two terms are similar to the internal energies
used in Kass snakes [19]. The last term −ρ

∫
A is called the

pressure energy (Epressure) and is directly proportional to the
negative of the area of the contour. Here, A is the area enclosed

Fig. 4. (a) Area (A) enclosed by an elemental length ds and the origin (O) in
case of a closed contour. (b) Area (A) enclosed by an elemental length ds and
an arbitrary origin (O) just below the open contour.

by an elemental length dsand the origin of the contour [see
Fig. 4(a)] and ρ is a constant. In the context of the current appli-
cation, where open contours are used, A is defined with respect
to the image origin, which remains below the open contour as
shown in Fig. 4(b). Depending on whether ρ is positive or nega-
tive, the contour expands (moves up in case of an open contour)
or contracts (moves down in case of an open contour), respec-
tively. In this particular application, ρ is chosen to be positive
or negative depending on the edge that is being detected. The
procedure used to determine the sign of ρ is discussed next.

Minimizing the internal energy using calculus of variations
will give rise to internal forces that drive the contour. This can
be expressed as follows:

Fx,internal = −α
d2x(s)

ds2 + β
d4x(s)

ds4 + ρ
dy(s)
ds

(5)

Fy,internal = −α
d2y(s)
ds2 + β

d4y(s)
ds4 − ρ

dx(s)
ds

. (6)

Here, Fx,internal and Fy,internal represent the internal forces
acting on the point (x(s), y(s)) in the x- and y-directions, re-
spectively. Each of the four snakes used to detect the double
edges are assigned to the same elastic and bending forces, i.e.,
they have the same α and β values. However, the sign of ρ
used for the snakes responsible for detecting the positive upper
edge and the negative lower edge is positive, giving rise to a
compressive pressure force, whereas the sign of ρ used for the
snakes responsible for detecting the positive lower edge and
the negative upper edge is negative, giving rise to an expansive
pressure force. There are two main reasons for selecting appro-
priate pressure forces for these four open snakes: 1) to avoid the
snakes getting “stuck” in regions of local noise; and 2) to reduce
the influence of the neighboring vertebrae. The following two
paragraphs will explain these reasons in detail.

First, we discuss the effect of noise on the snake evolution.
The preprocessed image (see Section II-B3) has local high gradi-
ents (noise) that can be simulated by using any noise model that
approximates the spike like salt and pepper noise. Fig. 5 shows
a synthetic model of the lumbar vertebra with double edges,
corrupted with salt and pepper noise. Consider an arbitrary ini-
tialization [shown in red in Fig. 6(a)] of a snake intended to
detect the positive upper edge. The internal forces used to drive
this snake are the elastic and bending forces. Note that for this
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Fig. 5. Synthetic model of a lumbar vertebra with double edges corrupted
with salt and pepper noise.

Fig. 6. Initialization is shown in red and the final result in cyan. (a) Final
contour gets latched on to the local image noise. (b) Final contour overcomes
local image noise and gets latched on to the positive upper edge due to the
compression pressure force.

snake, no pressure force is used. The external forces are con-
structed so that the contour is driven to places of high gradients
in the image. The result after 300 iterations is shown in cyan in
Fig. 6(a). We notice that the snake has “latched on” to the local
noise. Now consider the snake initialized in red in Fig. 6(b). In
addition to all the forces used for the snake in Fig. 6(a), this
snake [in Fig. 6(b)] is also driven by additional compressive
pressure force. The result after 300 iterations is shown in cyan.
We observe that the compressive pressure force pushes the snake
downward and overcomes the influence of the local noise. This
suggests that appropriate selection of the sign of ρ for the four
open contours will mitigate the effect of local noise on the final
detection result.

Another reason for using the pressure force is to reduce the
influence of neighboring vertebrae on the detection result. Con-
sider Fig. 7(a), which shows a part of the neighboring vertebrae.
An arbitrary initialization to detect the positive upper edge is
shown in red, and the final result (using all except pressure
forces) after 300 iterations is shown in cyan. One can notice that
the initialization is close to a neighboring vertebra, which results
in an incorrect result. Now consider Fig. 7(b) that shows the re-
sult in cyan with a similar initialization as in Fig. 7(a) (in red),
but with an additional compression pressure force. We observe
that the usage of appropriate pressure forces appears to reduce or
eliminate the influence of the neighboring vertebrae. This con-
cludes the description of the formulation of internal energies and
their corresponding forces for this application. The next section
will concentrate on the formulation of external forces.

2) External Force Formulation: The snake initializations
shown in Figs. 6 and 7 were located completely above the pos-
itive upper edge. Now, consider the snake initialization (red)
and the corresponding result (cyan) obtained by using the bal-
loons [20], shown in Fig. 8(a). The balloon snake is only partially
able to detect the positive upper edge, as it cannot discriminate
between an inner and outer edge. In order to avoid this problem,

Fig. 7. Initialization is shown in red and the final result in cyan. (a) Final
contour gets latched on to the neighboring vertebra. (b) Final contour eliminates
the influence of the neighboring vertebra and gets latched on to the positive
upper edge.

Fig. 8. Initialization is shown in red and the final result in cyan. (a) Balloons
do not have the ability to distinguish between an inner and outer boundary. (b)
DGVF snakes are able to accurately discriminate between an inner and outer
boundary.

the DGVF [16] snakes are used, which are designed to discrimi-
nate an inner and outer edge. Fig. 8(b) shows an implementation
of a DGVF snake with a similar initialization as in Fig. 8(a).
We note that the DGVF snake completely detects the positive
upper edge, while ignoring the negative upper edge. This is the
main motivation for selecting the external forces, employed in
DGVF snakes, for this application.

The external force that drives these snakes is posed as a
force balance condition instead of a typical energy minimiza-
tion problem. Two different types of external DGVF forces are
formulated to detect the four double edges: 1) a positive DGVF
force to detect the positive upper and lower edges and 2) a neg-
ative DGVF force to detect the negative upper and lower edges.
The mathematical framework for these forces is illustrated as
follows.

Consider the synthetic image of a lumbar vertebra shown in
Fig. 9(a). Let g be the gradient of this image. For positive edges,
one can define as follows:

f+
x (x, y) = max {gx(x, y), 0} (7)

f−
x (x, y) = −min {gx(x, y), 0} (8)

f+
y (x, y) = max {gy (x, y), 0} (9)

f−
y (x, y) = −min {gy (x, y), 0} (10)

and similarly, for the negative edges

f+
x (x, y) = −min {gx(x, y), 0} (11)

f−
x (x, y) = max {gx(x, y), 0} (12)

f+
y (x, y) = −min {gy (x, y), 0} (13)

f−
y (x, y) = max {gy (x, y), 0} . (14)
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Fig. 9. (a) Synthetic lumbar image. (b) f+
y for positive edges. (c) f−

y for

positive edges. (d) f+
y for negative edges. (e) f−

y for negative edges.

Here, gx and gy are the partials of g with respect to x and
y, respectively. For positive edges, f+

x , f−
x , f+

y , and f−
y rep-

resent the gradient of the positive edges in x-, −x-, y-, and
−y-directions, respectively. Fig. 9(b) and (c) shows f+

y and f−
y

as calculated by using (9) and (10), respectively. For negative
edges, f+

x , f−
x , f+

y , and f−
y represent the gradient of the negative

edges in x-, −x-, y-, and −y-directions, respectively. Fig. 9(d)
and (e) shows f+

y and f−
y as calculated by using (13) and (14),

respectively.
Within this setup, one can define the DGVF field as a 4-D

vector field represented by

D(x, y) = [u+(x, y), u−(x, y), v+(x, y), v−(x, y)] (15)

where u+ , u−, v+ , and v− are obtained by solving the four
equations as follows:

µ∇2u+ − (u+ − df+
x )(df+

x )2 = 0 (16)

µ∇2u− − (u− − df−
x )(df−

x )2 = 0 (17)

µ∇2v+ − (v+ − df+
y )(df+

y )2 = 0 (18)

µ∇2v− − (v− − df−
y )(df−

y )2 = 0. (19)

In the aforementioned set of equations, µ is a positive con-
stant. It is important to have a physical interpretation of the
aforementioned set of four equations, since they play an im-
portant part in the evolution of the DGVF snakes. Accordingly,
these equations are interpreted next by considering (16) as an
example.

1) If |df+
x |2 is small (which happens in the smooth or uniform

regions of the image), (16) will be dominated by the first
term, and therefore, approximated as follows:

µ∇2u+ = 0. (20)

Solving this diffusion equation with initial condition
u+

0 = f+
x , results in a smooth interpolation of f+

x from
the boundary. Applying the same logic to all the four
equations, the components of the DGVF field will be
a smoothly varying field in the uniform regions of the
image.

2) If |df+
x |2 is large (which happens near the edges), (16) will

be dominated by the second term and can be approximated

Fig. 10. (a) Synthetic lumbar image. (b) v+ for positive edges. (c) v− for
positive edges. (d) max{sin(θ), 0}. (e) −min{sin(θ), 0}. (f) Fy ,external for
positive edges.

as follows:

(u+ − df+
x )(df+

x )2 = 0. (21)

Solving this equation results in u+ = df+
x at the edges. Again,

applying the same logic to the remaining equations (17)–(19),
one can see that the components of the DGVF field have a high
value near the appropriate edges.

Next, if one considers θ to be the contour’s normal direction
at a particular “snaxel” (snake’s control point or element), then
the external DGVF forces in the x- and y-directions are given by

Fx,external = u+ × max{cos(θ), 0} − u− × −min{cos(θ), 0}
(22)

Fy,external = v+ × max{sin(θ), 0} − v− × min{sin(θ), 0}.
(23)

Depending on the manner in which the fields are constructed,
the external forces [calculated from (22) and (23)] will be ac-
cordingly used to detect either the positive or the negative edges.
A pictorial illustration of (23) is shown in Fig. 10, for the case of
fields set up to detect the positive edges. Fig. 10(b) and (c) shows
the fields corresponding to v+ and v−, respectively. Fig. 10(d)
and (e) shows a visual representation of max{sin(θ), 0} and
−min{sin(θ), 0}, respectively. Fig. 10(f) shows the external
force field in the y-direction (23). We observe from Fig. 10(f)
that Fy,external consists only of the edges corresponding to the
y component of the positive edges. In Fig. 10(f), note that all the
negative edges are eliminated, since the DGVF fields have been
constructed to detect the positive edges, thus giving the snake
the ability to distinguish between a positive and a negative edge.

To conclude, among the four snakes used, two employ positive
DGVF forces and the other two employ negative DGVF forces as
their external forces. Since all the four snakes are open contoured
and use additional pressure forces, we term them PODGVF
snakes. In the Section II-B, we explain in detail, the step-by-
step procedure followed to detect these double edges.
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Fig. 11. (a) ASM result of a single lumbar vertebra. (b) Four detected corner
points.

B. Customizing PODGVF Snakes to Detect Vertebral
Double Edges

In the following sections, we describe the sequence of steps
used in tailoring the PODGVF snakes to detect the vertebral
double edges.

1) Detecting Vertebra Corners: The first step in the detec-
tion of double edges lies in estimating the locations of the ver-
tebra corners, which in turn, can be obtained by segmenting the
radiographic lumbar vertebrae. Therefore, before delving into
the corner detection step, it would be appropriate to provide a
brief overview of the past research that has been conducted by
the authors with regard to lumbar vertebrae segmentation.

A hierarchical three-step procedure, consisting of: 1) coarse
segmentation; 2) fine segmentation; and 3) double-edge detec-
tion, has been adopted to segment the radiographs. The details of
the work conducted with regard to coarse and fine segmentation
can be found in [11] and [15]. The coarse segmentation of the
lumbar vertebra is performed using a customized version of the
GHT [15] that provides for a robust approximation of the pose
of the vertebrae, which in turn, is used as initialization to the fine
segmentation stage, wherein a customized ASM is employed to
provide the final segmentation. Finally, it is worth mentioning
that after conducting an extensive study involving 2000 lumbar
spine radiographs, it was observed that the output of the first
two steps of our approach provided an acceptable segmentation
result in around 80% of the cases. In these 80% cases, the re-
sult provided by ASM is used to facilitate the placement of the
corner points for the purpose of double-edge detection.

Consider the lumbar vertebra and its corresponding ASM
segmentation (red points) shown in Fig. 11(a). We use the ASM
result, obtained by using the procedure outlined in [11], for
snake initialization and for establishing a region of interest. The
ASM result is first employed to find the four corners of the
vertebra, as described next.

We adopt the following sequence of steps to find the vertebra
corners from the ASM result.

1) The distance and the slope between every pair of points
on the segmented ASM boundary are calculated.

2) Each pair of points is separated into one of two categories,
depending on whether the slope is positive or negative.
The points corresponding to zero or infinity slopes are
special cases, and are arbitrarily placed in either of the
two categories.

3) The pairs of points corresponding to the maximum dis-
tances in each category are selected as the vertebra cor-
ners. These four points are shown in Fig. 11(b).

Fig. 12. (a) and (b) Determining the outer diagonal points to establish a region
of interest. (c) Region of interest for a single lumbar vertebra.

Fig. 13. (a) Gray level image of a lumbar vertebra. (b) Edge image. (c) Blended
image.

This procedure is repeated for all five vertebrae.
2) Establishing Region of Interest: A region of interest is

then established for each of the five lumbar vertebrae using the
identified corner points. This is done to reduce the computational
cost that would otherwise be required to compute the DGVF
field for the entire image. The region of interest is selected as
follows.

1) For each of the two diagonals, the corner points on the di-
agonal are selected, and two points (blue color) are marked
at an empirically selected distance of 40 pixels (so that the
points always lie well outside the vertebra) on either side
of the selected points as shown in Fig. 12(a) and (b).

2) A region of interest is constructed using these four points
as shown in Fig. 12(c). All ensuing calculations for each
vertebra are done within the established regions of interest.

3) Preprocessing for Noise Removal and Edge Enhance-
ment: The main objectives in the preprocessing step [11] are the
enhancement of the image and elimination of noise while pre-
serving the double edges. As a first step, the image is high-pass
filtered, i.e., the edges are enhanced using unsharp masking,
followed by thresholding. For this purpose, a Gaussian mask of
size N × N and standard deviation σ is used for blurring the
image; subtraction of the blurred from the original results in
edge enhancement; this is followed by Otsu’s thresholding [21],
which binarizes the image. These edge images are extracted for
five different values of N and σ, and are subsequently com-
bined using an EXCLUSIVE OR operation. To preserve the double
edges, which might be lost during edge extraction (due to poor
contrast), the original gray level image is combined with its
corresponding edge image. This procedure is termed as blend-
ing [11], and is produced by taking the average of the original
gray level image with the edge image, as shown in Fig. 13.

4) Initialization of Open Contours: Four open contours are
initialized for the four boundaries discussed in the previous step.
The control points for these contours are selected as follows.

1) The midpoints of the upper and lower corner points are
determined, as shown in Fig. 14(a).
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Fig. 14. Initialization of four open snake contours. See text for a detailed
description.

2) Four points are marked on the line joining the midpoints
at an empirically selected distance of 25 pixels (so that
two points lie well outside the vertebra and the other two
points lie well within the vertebra) from either midpoint,
as shown in Fig. 14(b).

3) For each diagonal pair of corner points, two points are
marked on the interior side of the line joining them at
an empirically selected distance of 20 pixels (so that the
points lie well within the vertebra), as shown in Fig. 14(c).
For each of the corner points, a point is marked at an exper-
imentally selected distance of 15 pixels (so that the points
lie well outside the vertebra) on the line perpendicular to
the diagonal line [see Fig. 14(c)], and for a superior (infe-
rior) corner point, in a direction along this perpendicular
that will place the point above (below) the superior (infe-
rior) edges. This concludes the generation of the control
points for the four contours [see Fig. 14(d)].

Fig. 14(e)–(h) shows the initial positive upper, the negative
upper, the negative lower, and the positive lower contours, re-
spectively. The aforementioned procedure aims to ensure that
the contours are not initialized within the upper or lower double
edges. This allows for reduction in the computational workload
by defining only four, rather than eight, boundaries.

5) Specification of Forces and Snake Movement: The inter-
nal forces are specified to be different for the positive and neg-
ative contours. For the positive upper and lower contours, the
internal force is a combination of elastic, bending, and the com-
pression pressure forces. On the other hand, for the negative
upper and lower contours, the internal force is a combination
of elastic, bending, and the expansion pressure forces. As men-
tioned earlier, the compression/expansion pressure forces are
added to aid the contours in overcoming noisy pixels and reduc-
ing the influence of neighboring vertebrae. The external force
used is the positive DGVF force for the positive edges and
the negative DGVF force for the negative edges. Thus, the total
force that drives the four contours is the aggregate of the internal
and external forces given as follows:

Fx = −α
d2x(s)

ds2 + β
d4x(s)

ds4 + ρ
dy(s)
ds

+ (u+×max{cos(θ), 0}
− u− × min{cos(θ), 0})

∣∣
(x(s),y (s)) (24)

Fig. 15. Demonstration of the efficacy of DGVF forces. (a) Initialization of
the four open contours shown in cyan and the ground truth is shown in red.
(b) Erroneous result (shown in red) obtained using traditional GVF forces.
(c) Correct result shown in red with DGVF forces.

Fy = −α
d2y(s)
ds2 + β

d4y(s)
ds4 − ρ

dx(s)
ds

+ (v+ × max{sin(θ), 0}
−v− × min{sin(θ), 0})

∣∣
(x(s),y (s)) . (25)

Here, Fx and Fy are the total forces acting on the point
(x(s), y(s))in the x- and y-directions, respectively. A total of
four snakes were evolved by these forces to detect the double
edges on each lumbar vertebra, and there are five vertebrae in
each image (L1–L5). Hence, there are 20 snakes operating on
each lumbar vertebrae image to detect the double edges.

While the effect of DGVF forces was presented in Fig. 8 using
a synthetic image, in Fig. 15, we demonstrate the same on a real
example by comparing it with gradient vector flow (GVF) snakes
[22]–[25]. It is interesting to note that although the direction
of the pressure force is known, traditional GVF snakes could
only detect the double edges accurately if the initial contour
completely enclosed the double edges. Consider Fig. 15(a) that
shows the preprocessed vertebra and its initial contour in cyan.
Fig. 15(b) shows the erroneous result obtained using traditional
GVF snakes (segmentation error = 2.7 pixels). The arrow marks
in Fig. 15(b) indicate that the initial contour does not completely
enclose the double edges and because GVF snakes are unable to
distinguish between an inner and an outer boundary, the snakes
latch on to incorrect edges. Fig. 15(c) shows the result (red)
obtained by using DGVF forces, representing a segmentation
error of only 0.7 pixels. This demonstrates the importance of
using DGVF forces, which effectively remove the impractical
condition of requiring the initial contour to enclose the target
double edges.

III. RESULTS AND DISCUSSION

This section discusses the accuracy of the proposed double-
edge detection technique and its role in assessing vertebral de-
formities in the lumbar spine.

A. Double-Edge Detection Accuracy

As noted in the Section I, the Lister Hill National Center
for Biomedical Communications, an R&D division of the U.S.
National Library of Medicine, maintains a large collection of
lumbar spine X-ray images. We randomly selected 100 lumbar
vertebrae images from this database and processed them using
the proposed algorithm. The ground truth for these 100 images
was established by manually landmarking the four boundaries
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Fig. 16. Examples of manually landmarked (shown in blue) lumbar spine
images that were rated by the radiologists as (a) good, (b) reasonable, and
(c) not good.

Fig. 17. (a) Double-edge detection error distribution for L1. Error is average
of point-to-point differences between PODGVF solution contour and ground
truth contour, for both upper and lower double edges. (b) and (c) Ground truth
is manually marked in green, the double-edge detection result is shown in red
and the initialization is shown in cyan. (b) Detection error = 0.7364 pixels.
(c) Detection error = 0.7672 pixels.

corresponding to the double edges. Fifty percent of the land-
marked boundaries were then randomly selected for review by
two radiologists who graded the manual segmentations as ei-
ther ‘‘good,’’ ‘‘reasonable,’’ or ‘‘not good.’’ The results of this
review process showed that 92% of the cases were rated as
‘‘good’’ by the radiologists. Fig. 16(a)–(c) shows examples of
each of these ratings. Four open contours were initialized to
detect the double edges of each vertebra, with parameter values
of α = .5, β = .01, and |ρ| = .02 for each PODGVF snake.
Each snake was set to evolve for a maximum of 300 iterations.
The validity of the double-edge detection results was analyzed
by measuring the detection error, calculated as a point-to-point
distance between the detected double edges and the manually
landmarked ground truth. Fig. 17(a) shows the average point-
to-point detection error distribution for the four double edges
corresponding to L1 of these 100 images.

Two examples with low detection errors of .7364 and .7672
pixels are shown in Fig. 17(b) and (c), respectively. In Fig. 17(c),
even though the positive upper edge is broken and the positive
lower edge is fragmented, the PODGVF snakes perform well
with respect to detecting both edges.

Table I shows the percentage of images having an error less
than 2.5 pixels. We observe that the detection error is higher
for vertebra L5 than that for the other vertebrae. This happens
because, for most of the images, the bottom edges of L5 are
very subtle, causing them to get “washed away” during the pre-
processing step. It can be observed that most of the images have
a detection error less than 2.5 pixels. As an illustration, Fig. 18
shows two examples with detection errors close to 2.5 pixels. By
visually comparing the double edge results to the radiologist-
verified ground truth, it was deemed that a segmentation error
of 2.5 pixels and lesser was acceptable. Also, the major sources

TABLE I
PERCENTAGE OF IMAGES HAVING DISTRIBUTION ERRORS LESS

THAN 2.5 PIXELS

Fig. 18. Examples with detection errors close to 2.5 pixels. Ground truth is
shown in green and the final result in red. (a) Detection error = 2.4773 pixels.
(b) Detection error = 2.4428 pixels.

of false positives and false negatives in this study were found to
be: 1) noise in the preprocessed image; 2) presence of broken
edges; and 3) complete or partial absence of vertebra L5 from
the radiographic images.

The previous experiment served to illustrate the accuracy of
the proposed approach. Since, this is a stepwise procedure, it
should be noted that the accuracy of the proposed approach
hinges on the result produced by ASM. Thus, an experiment
was conducted in order to address the sensitivity of the algo-
rithm to the placement of the initial contours. Since the initial
contour is determined based on the four corner points obtained
from the ASM result, this experiment focuses on quantifying
the double-edge segmentation errors by perturbing the four cor-
ner points of each of the five lumbar vertebrae. This involves
randomly perturbing the contour points corresponding to the
vertebra corners within a 10 × 10 square region. The size of
the region was empirically determined after looking through the
results of ASM in a set of 2000 images. It was observed that
the 10 × 10 region provides for significant variability in the
position of the initial contours, while ensuring that they do not
cross over to the neighboring vertebrae. After the four corner
points have been randomly perturbed, the initial contour is gen-
erated, the double edges are segmented, and the segmentation
error is quantified using the ground truth. The aforementioned
procedure was conducted, a total of ten times for each of the
five lumbar vertebrae in the set of 100 images that were used
for the study. Table II reports the mean and standard deviation
of the segmentation errors that were obtained from this experi-
ment. It can be seen that the average values of the segmentation
error are within the acceptable range of 2.5 pixels, which serves
to demonstrate the robustness of the proposed approach with
respect to initial contour perturbations.
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TABLE II
SENSITIVITY ANALYSIS TO CONTOUR INITIALIZATION

Fig. 19. Detected double edges are shown in cyan. The mean contours (yellow)
are obtained by averaging the double edges. M2 and M1 (red) are the mid-points
of the mean contours.

B. Vertebral Deformity Assessment

Diagnosing vertebral deformities is a critical factor in the as-
sessment of osteoporosis. Often times, these deformities in the
vertebral shape are considered by radiologists as indicators of
spinal fracture. For a review of comparative quantitative meth-
ods used to assess fracture, see [7]. The vertebral deformities
can be widely classified into three categories, namely biconcave
deformity, crush deformity, and wedge deformity. The method
employed in [5] may be used to assess the severity of these de-
formities. Three important measurements can be made in order
to classify the lumbar vertebra as deformed or normal, namely
Ha (anterior height), Hp (posterior height), and Hm (midverte-
bral height). These heights are usually obtained by placing six
morphometric points by a radiologist on each vertebra [2]. These
six points can be automatically detected by using the mean con-
tours, which in turn, can be obtained from the double edges
and the corner points of each vertebra. In Fig. 19, the detected
double edges are shown in cyan. The mean contours (yellow)
are obtained by averaging the double edges. In Fig. 19, note that
M2 and M1 (red) represent the midpoints of the mean contours.
A2 and A1 correspond to the anterior end points, whereas P2
and P1 are the posterior end points. These anterior and posterior
end points are obtained from the four corner points detected
earlier.

Within this framework, the anterior, posterior, and supe-
rior heights can be calculated using Ha = ‖A2 − A1‖, Hp =
‖P2 − P1‖, and Hm = ‖M2 − M1‖, respectively. The Melton
approach [26] may be used to differentiate the deformities by
measuring the following ratios.

1) Biconcave deformity: Hm /Hp .
2) Wedge deformity: Ha/Hp .
3) Crushing deformity: Hp/Hp(+1), Hp/Hp(−1),

Ha/Ha(+1), and Ha/Ha(−1). Here +1 and −1 stand
for the upper and lower adjacent vertebra, respectively.

A threshold of.85 of the mean value of the ratios can be used
to determine a deformity [26].

IV. CONCLUSION

Double-edge detection, whether it is done implicitly or ex-
plicitly, is an important factor for the assessment of injury or
vertebral collapse. In addition, automatic detection of double
edges enables fast and objective extraction of important mor-
phometric measurements that could be used to develop both
computer-aided diagnostic tools, as well as content-based im-
age retrieval (CBIR) systems [27]. We took the approach of
customizing DGVF snake models to detect the vertebral double
edges in lumbar spine radiographs. In particular, we combined
open contoured DGVF snakes with appropriately defined pres-
sure forces to achieve accurate detection of vertebral double
edges in the presence of noise and in the neighborhood of adja-
cent vertebrae. The efficacy of the proposed algorithm was es-
tablished by its application on a set of 100 lumbar spine images,
followed by a quantitative evaluation of results. The algorithm
achieved a detection error of less than 2.5 pixels for 85% of
the test images, when evaluated against analyst-generated and
radiologist-verified ground truth.

Although the relevance of double-edge detection to verte-
bral morphometry was clearly illustrated in Section III-B, and
while sufficient evidence exists in the literature [2], [7]–[9] to
substantiate its necessity for accurate morphometric measure-
ments, further studies are needed to quantify the anticipated
level of accuracy and to assess its significance.
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